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Optimal control technique
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of uncertainty measurements
in surveying instruments
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Abstract
The objective of this study was to develop an optimal control approach by numerical calculus to predict how to reduce
the overall uncertainty of survey instruments unable to directly measure inaccessible points. To reach our goal, two
approaches were used to attain the objective. The first was inspired by mathematical models related to three methods
appropriately selected and contained in Zhuo’s work proposed in 2012. These were Remote Elevation Measurement
(REM), Remote Elevation Dual Measurement (REDM), and Front-to-Back Measurement (FBM) methods whose uncer-
tainties on the measurements of points were deduced using error propagation equations. Optimal control technique
helps us to show that for the REM, the height h of the prism contributed more than 70% compared to the global uncer-
tainty for ranges S\ 50m from the prism. For the REDM, when the distance between two consecutive stations
increases, the weight of the contribution of the two zenith angles z1 and z2 tends to 50% each for z1 close to z2, which
is to be avoided. For the FBM, the weight of the contribution during the front measurement process before is negligible.
The second approach used the Swedish regulation of SIS-TS 21143:2009 which classified total stations according to types
of uncertainty to compare the results given by the total station of class T3 unable to directly measure inaccessible points
with the more sophisticated class T1 station with direct measurements. Thus, for small spans at the rear measurements
SDG=10m, the height h2 of the front prism has the greatest relative contribution more than 90% for zenithal differ-
ences z1 � z2 =40 gon. This results of our analysis were convincing and provided designers with the data to minimize
the overall uncertainties essential in the conception of total stations.
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Introduction

The analysis of the contribution weight of the relative
importance of each component of the overall uncer-
tainty is essential to identifying the sources of uncer-
tainty that can be addressed potentially, to reduce the
overall uncertainty. Measurements in industries have
become more important in view of the fact that, mea-
surements provide the basis for any control. The man-
agement of random errors associated with any indirect
measurement problem is a major concern in the field of
surveying and even in all other areas of science.
Surveying refers to the science of accurately measuring
horizontal and/or vertical distances in the field. There
are many surveying problems that can occur during the
process: instrument errors caused by incorrect calibra-
tion or incorrect use of instruments; environmental

factors such as wind, rain, or fog can distort or block
the survey signal; human error where surveyors can
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make mistakes in taking measurements or in reading
the instruments (see Idoje et al1 and Hussein et al.2).
The reduction of errors due to the total station when
measuring the vertical angle is a major problem in
improving the accuracy of trigonometric leveling. The
most popular techniques for identifying and analyzing
sources of the overall uncertainty are developed in engi-
neering literature such as the models which included
the uncertainty in the sample’s mass and of the volu-
metric glassware (confere Harvey3 and Cheng et al.4)

Thus, Zhou and Sun5 proposes the method of level-
ing combining the total station with a tracking bar to
reduce the sources of errors of trigonometric leveling.
On the other hand, Ghilani and Wolf6 analyzing the
individual sizes contributes to functional error when
measuring the elevation of a point. The combined stan-
dard uncertainty evaluation is performed and the uncer-
tainties of azimuth and elevation angles are established
and the system’s measurement accuracy is also calcu-
lated.7 Nowadays, the coefficient of contribution to
uncertainty plays an important role in the development
of tools and the choice of electronic instruments such as
total stations and GPS, that it allowed8 to propose the
coefficient of contribution to the uncertainty that is
appropriate for the correlated and uncorrelated input
variables. This allowed them to improve the procedure
for determining the molar mass of lead and its uncer-
tainty from the four isotopes of lead.

The three methods developed in this work have already
been addressed by.7 But the analysis of the weight of the
individual contribution to the overall uncertainty needed
to identify the parameters responsible for the rapid
growth of the overall random error had not yet been
made. Knowledge of the contribution of each of these
parameters in the measurement of inaccessible points by
applying one of the methods highlighted with less efficient
equipment makes it possible to equal the result. The ori-
ginality of this work lies in the fact that we performed
numerical simulations of the weight of the individual con-
tribution to global uncertainty and the law of propagation
of uncertainties. This offers us a huge opportunity to find
ways and means to improve the measurement process for
the three methods. In addition, the geometric configura-
tions associated with trigonometric methods play a very
important role in the quality of the data obtained during
the measurement processes. Surveyors always choose the
most appropriate equipment such as total station which is
capable of scanning interfaces through a cloud of points
based on the control point and back sight and simulation
process. For example, the T1 class total station is highly
expensive piece of equipment than the T3 class total sta-
tion. In light of this assertion that numerical simulations
have an important role to play in probing the different
configurations that can allow us to improve the measure-
ment process, this allows us to be more efficient and to
save cost and time in the end.

We assume that systematic errors are reduced during
the measurement process. Then, only the random errors
obey the law of propagation of the uncertainties. The

purpose here is to study the effects of the propagation of
random errors in an indirect measurement process and
give appropriate recommendations for each method. To
meet our defined objective, a numerical analysis is per-
formed with the MATLAB software tool (R2019 a, win
64). The theory of these methods is presented and the
theoretical uncertainty of each method is deduced and
analyzed numerically. Then, the measurement of uncer-
tainty is evaluated. In addition, some recommendations
on methods are given. Using these indirect methods, the
altitudes above the ground of inaccessible points can be
measured with less risk and less effort, which will even-
tually save time and increase efficiency.

This paper is organized as follows: Section 2 presents
the mathematical models of three methods. A brief clas-
sification of total stations according to the standard
and the measurement of uncertainty for different class
total stations are presented. Section 3 is devoted to ana-
lyzing the sources of errors and proposing error reduc-
tion strategy which is the core of this work. Our results
ended up with a discussion and a conclusion.

Methodology

Many different techniques can be used to measure data
quantities such as heights, plane coordinates, vertical
and horizontal angles, horizontal and inclined dis-
tances. Numerous instruments and methods have been
developed for this purpose. It is almost impossible to
take observations in the surveying process that are
completely stable; which means free from small varia-
tions caused by errors. With these error-prone mea-
sured data, it’s a matter of establishing their effects on
the measurements. This involves starting from the indi-
rect measurements and determining its mathematical
relationship to evaluate its direct measurement.

The methodological approach used in this study (see
Trélat9) is that of an optimal control problem consisting
of two parts: determining an optimal trajectory (dis-
tance, height, angle) joining an initial set (indirect mea-
surements) to a target (minimizing overall uncertainty),
and ascertaining that the target is attainable with refer-
ence to Zhuo’s7 various methods. Next, numerical
simulations will help us to better calibrate our instru-
ments in order to assess its optimal trajectory.

The typical measurement propagation law for a
quantity U as a function of independent measurements
x1, x2, :::, xn where U= f x1, x2, :::, xnð Þ is given by:

S2
U =

Xn
i=1

∂U

∂xi

� �2

S2
xi

ð1Þ

where SU is the standard error of U and are standard
errors of x1, x2, :::, xn respectively.

Remote elevation measurement (REM) method

The principle of the REM (see Duggal10) is illustrated
in Figure 1 below:
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where a prism B is vertically positioned under an
unknown point A, the height h of the prism ground is
measured and the distance from the slope to the prism
from a remote position such as F, is determined by a
total station D as well as the two zenith distances z1, z2.
The height H above ground is found by trigonometry:

H=S sin(z2) cotan (z1)� Scos(z2)+ h ð2Þ

The standard uncertainty of the REM associated with
height H above the ground is obtained according to
JCGM 10011 by the formula (1) of the combined stan-
dard uncertainty which can be written as

u2H =
X4
i=1

c2i u
2(xi) with ci =

∂H

∂xi
ð3Þ

This is the law of propagation of uncertainties (see
Zhang and Wang12), where ci is the sensitivity coeffi-
cient of the input estimate xi =Si, zi, hi (Si is the tilt
distance of the prism between two points, zi is the zenith
angle, and hi the height). It is important to note that we
assume that the input estimate xi is not correlated.

u2H= sin(z2)�cotan(z1)�cos(z2)ð Þ2u2(S)+S2sin2(z2)

sin4(z1)
u2(z1)

+S2 cos(z2)cotan(z1)+sin(z2)ð Þ2u2(z2)+u2(h)

ð4Þ

At this level, it may be useful to analyze the relative
importance of each component of uncertainty. For this,
we defined relative contribution coefficients:

Ri’

∂H
∂xi

� �2
u2(xi)

u2H
ð5Þ

This is the eigenvalue contribution of the error variance
(uncertainty square) on xi with respect to the total error
variance. This calculation of relative importance is a
useful tool for identifying sources of uncertainty that
can be addressed to reduce overall uncertainty.

The uncertainty analysis provides a formal and
systematic framework for quantifying the uncertainty

associated with system results. In addition, it provides
the designer with useful information on the contribu-
tion of each stochastic fundamental parameter to the
overall uncertainty of system outputs. This knowledge
is essential for identifying the ‘‘important’’ parameters
that need to be given more attention, in order to better
evaluate their values and thereby reduce the overall
uncertainty of the system results. When a system
involves basic parameters whose values cannot be cer-
tain, the traditional approach is to perform a sensitivity
analysis to quantify the rate of change of the output of
the model, due to a change of unit in a basic parameter.

In the equation (5), the individual terms ∂H
∂xi

� �2
u2(xi)

represent the individual contribution to the total error,
resulting from the observation errors in each indepen-
dent variable. When the size of the error estimated by a
function is too large, the inspection of these individual
terms will indicate the most important contributors to
the error. The most effective way to reduce the overall
error in function is to look closely at how to reduce the
most important error terms in equation (4).

All electronically measured distance observations (con-
fere Ceylan13) are subjected to instrumental errors that
manufacturers consider to be a constant error a and a sca-
lar error b. A typical specified precision is 6(a+ b ppm).
In this expression, generally 14a410mm and b generally
ranges from 1 to 10 parts per million (ppm). Other errors
involved in electronically measured distance observations
come from centering errors of the target and the
instrument. Given that, in any survey involving multiple
stations, the estimated random error (confere Ghilani and
Wolf14) in an observed distance is:

u(S)=6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
i +s2

r + a2 + (Sbppm)2
q

ð6Þ

Where si =1:5mm is the centering error of the instru-
ment height 1:5m which is not negligible in the context
of the measurement method used because the total sta-
tion is moved then stationed during the operations of
measure and sr =1mm is the centering error of the
reflector. It should be noted that the prism cannot
change position during the measurement process. For
the total station, the estimated error for a single obser-
vation (see Ghilani and Wolf14) of zenith angles is:

u(z)=6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23s2

ISO+s2
B

� �q
ð7Þ

where sISO is the ISO 17123-3 standard for the instru-
ment and sB the error in the vertical compensator or in
the leveling of the circular bubble. The values of sISO,
and a+ bppmð Þ=2+2ppm are contained in the clas-
sification table of total stations according to the stan-
dard SIS-TS 21,143 used. Thus, an analysis of the
coefficient of relative importance with a class T3 (TCR
403) total station is given in Figure 2 below by using
equation (5).

Figure 1. Schematic diagram of the REM, where the zenith
distances z1, z2 are measured by a total station in D (confere
Zhuo7).
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In this case, the equation (4) reads:

u2H = 1+
sin2 z2 � z1ð Þ

sin2(z1)

� �
u2(z)

+S2 sin2(z2)

sin4(z1)
+

cos2 z2 � z1ð Þ
sin2(z1)

� �
u2(h)

ð8Þ

For z2 =102gon, the uncertainty component of z1 is
dominant at more than 60% and the uncertainty com-
ponent of z2 at more than 30% for stations located
more than 150m from the reflector. Thus, at more than
150m, it is advisable to use precise angle devices by
performing repetitive measurements on z1 and z2 to act
on the overall uncertainty. In other words, u(z1) and
u(z2) must be small for long-range configurations with
respect to the reflector. On the other hand, stations
within 20m of the reflector will have the uncertainty
component on the reflector’s height, gradually
increased to more than 90% of the contribution to
overall uncertainty. Hence, there is a need to act using
extremely precise devices in such distances. As z1
increases, the contributions of S and z1 to the overall
uncertainty decrease, while those of the parameters h
and z2 increase.

The tachymeter used to collect data in this study is a
Leica TCR 403 total station with an angular precision
of 1mm gon and a distance precision of 2mm + 2
ppm. The data to determine the numerical measure-
ment uncertainty of the methods presented have been
collected from a Swedish regulation called SIS-TS
21143: 2009 (see Cederholm and Jensen15).

In this regulation, total stations have been classified
as read in Table 1 below according to the expected
standard uncertainties, with the aim of predicting the
distances and zenith angles to measure, to obtain the

lowest possible overall uncertainty of the object to
measure.

Table 2 below shows the values of the uncertainties
under the influence of the parameters z1 andS.

The simultaneous effects of the main parameters of
influence z1 and S on the overall uncertainty are
represented in Figure 3, with sB =0:3mgon and
sISO =1mgon.

The overall uncertainty increases rapidly as the
stationing distance S relative to the reflector increases.
On the other hand, the influence that a class T1
(TM6100A) total station can have on global uncertainty
is studied. To do this, the observations are recorded and
illustrated in Table 3, highlighting an increase in the level
of accuracy on a class T1 with sB =0:15mgon,
sISO =0:15mgon and (a+ b ppm)=1+2ppm Where

Figure 2. Analysis of the relative importance of each component of global uncertainty for class T3 total station: RS, RZ1
, RZ2

, and Rh

for figures (a), (b), (c), and (d) respectively where z2 = 102gon, u(z1) = u(z2) = u(z)and u(S) = u(h).

Table 1. Classification of total stations according to the SIS-TS
21143: 2009 standard.

Class Standard uncertainty
in direction u(dir)

Standard uncertainty
in distance u(d)

T1 0.2 mgon 1 mm + 2 ppm
T2 0.6 mgon 3 mm + 3 ppm
T3 1 mgon 3 mm + 3 ppm

Table 2. Measurement uncertainty for class T3 total stations as
a function of S for the REM method z2 = 102gonð Þ.

Class T3 total stations

uH(mm) 3.3 3.5 4.5 6.1 7.8 10.5
S(m) 20 35 100 150 200 300
z1(gon) 85 60 100 75 72 83
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si =1mm is the centering error of the instrument height
1.5m, sr =1mm is the centering error of the reflector.

A graphical representation of the uncertainty as a
function of parameters z1 and S is carried out in
Figure 4.

Moreover, for a fixed value of the global uncertainty
on the height uH =3mm fixed, it is possible to find a
maximum value of the positioning distance S beyond
which this prediction cannot be achieved. This value of
uH given, allows us to solve the parameter S function
of z1 and z2 using equation (8) and Figure 5 below is
obtained with the class T3 total station.

Remote elevation dual measurement (REDM)
method

The principle of the REDM is illustrated in Figure 6.
Heights H1 and H2 above the ground are measured

using the REM. As seen in Figure 6, when a prism is
positioned at point F and a total station at point O1,
zenith distance z1 at unknown point A is measured with
a total station at O1. The total station can be moved to
point O2 where point O2 is closer to the unknown point
A, and the zenith distance z2 to unknown point A is
measured by a total station at point O2. H3 which is the
difference in height between points E and F, can be
measured with a leveling instrument. Finally, the height
H above the ground can be calculated using trigonome-
try function. Note that the value H1 �H2ð Þ can be posi-
tive or negative; when it is negative, the unknown point
A is below the prism in F, the point C is also below the
point D and the value H1 �H2ð Þ is therefore negative.

Thus, the height above ground H of the unknown point
inaccessible A is:

H=H1 + H1 �H2ð Þ cos(z1)sin(z2)
sin(z1 � z2)

�H3 ð9Þ

Recall formula (1), the explicit form of the combined
standard uncertainty of height H above ground of
unknown point A inaccessible reads:

u2H =
H1 �H2ð Þ2

sin4 z1 � z2ð Þ cos2(z2)sin
2(z2)u

2(z1)
	

+ cos2(z1)sin
2(z1)u

2(z2)



+ 1+
cos(z1)sin(z2)

sin z1 � z2ð Þ

� �2
u2(H1)

+
cos2(z1)sin

2(z2)

sin2(z1 � z2)
u2(H2)+ u2(H3)

ð10Þ

It is important to identify the parameters that a small
variation will induce a rapid increase in overall uncer-
tainty. A graphical representation of the relative impor-
tance of each component of the uncertainty resulting
from the equation (5) allows to obtain Figure 7.

Generally, when H1 �H2 grows, it means that the
distance between two consecutive sets increases as well.

Figure 3. Global uncertainty analysis for class T3 total stations
according to parameters S and z1 z2 = 102 gonð Þ.

Table 3. Measurement uncertainty as a function of S and z1 for
the REM method z2 = 102gonð Þ.

Class T1 total stations

uH(mm) 2.7 2.7 2.8 2.9 3 3.3
S(m) 20 35 100 150 200 300
z1(gon) 85 60 100 75 72 83

Figure 5. Highlighting the maximum positioning distance for a
class T 3 total station, knowing that uH = 3mm.

Figure 4. Analysis of the overall uncertainty for a class T1 total
station according to parameters S and z1; (z2 = 102 gon).

Feumo et al. 5



For this purpose, Figure 7 shows an overall increase in
the relative contribution weight of the parameters z1
and z2; on the other hand, an overall decrease in the
relative contribution weight of the H1, H2 and H3.

Thus, for values of jz1 � z2j510gon, the contribu-
tion weight of the angles z1 and z2 tends to zero, and
the overall uncertainty is dominated by the contribution
weight of the parameters H1 and H2. Especially, when
z1 � z2 =20 gon, the dominant contribution weight
parameter is RH1

, when H2 and H3 have a negligible
contribution. In this case, the use of extremely precise
devices at a distance is recommended. On the other
hand, a zenith difference such that jz1 � z2j410 gon
(with z1 different of z2) will see an exponential increase
in the weight of the contribution of the angles z1 and z2
while that of the other parameters decreases to zero.
This case is to be avoided because the precision of the
devices is limited. The standard uncertainty formula
gives a clear indication of the adverse situation that
might occur in cases where the difference between the
two measured zenith distances is small. In order to mea-
sure the simultaneous effects that the major parameters
H1 �H2 and z1 � z2 may have on the uncertainty uH,
the observations are recorded in Table 4 and repre-
sented in Figure 8.

Thus, the increase in the difference H1 �H2 results
in a growth of uncertainty uH. This situation corre-
sponds to the increase of the distance separating the
two consecutive positions of setting O1 and O2 in the
case of a relative at the ground. On the other hand, a
zenithal difference z1 � z2 tending toward zero will
increase the uncertainty uH exponentially. The overall
uncertainty increases rapidly when the difference
z1 � z2 tends to 0gon; so, a low value of z1 � z2 is to be
avoided. But in the case where H1 �H2 is large, it will
always be necessary to be reassured that z1 � z2 is not
close to zero because the uncertainty is extremely sensi-
tive to the zenith difference z1 � z2. In addition, in the
case of measurements made with class T1 measuring
instruments, the influence of the measurement para-
meters on the uncertainty is illustrated in Table 5 and
shown in Figure 9.

A marked improvement in uncertainty is observed
because the uncertainties obtained with a class T1 total
station are more accurate than those obtained with a

class T3 total station. The class of the total station has
an important influence on the overall uncertainty of
the height to be measured. Among the largest accura-
cies, we can expect an accuracy of 2:2mm with a class
T1 total station. On the other hand, with the total sta-
tion of class T3, a precision of 3:1mm can be reached.
Thus, the expected results with the class T3 total sta-
tion are less accurate than those obtained with a class
T1 total station.

The front-to-back measurement (FBM) method

The principle of the FBM method is shown in Figure
10 below,

where a total station is placed at point M and its
height h1 is measured above the ground with a measur-
ing tape, we observe the unknown point A by measur-
ing the zenith distance z1: The total station is replaced
by a prism at point M, and the height of the prism is
adjusted so that it is equal to h1. The total station is
moved to point K which is closer to the inaccessible
area. The unknown point A is again observed by mea-
suring the zenithal distance z2. Then, another N prism
is placed at point J. The zenith distances z3 and z4 are
measured by the total station in G.

Thus, the height H above the ground of the
unknown point inaccessible A reads:

H=
SDGcos(z1)sin z2 + z4ð Þ

sin z1 � z2ð Þ +SDGcos(z4)

+SGNcos(z3)+ h2

ð11Þ

where SDG is the tilt distance of the prism between point
D and point G. The standard uncertainty of the height
H above the ground of the unknown point A inaccessi-
ble reads:

u2H SDGsin z2 + z4ð Þ cos(z2)

sin2 z1 � z2ð Þ

� �2

u2(z1)

+ SDGcos(z1)
sin z1 + z4ð Þ
sin2 z1 � z2ð Þ

� �2

u2(z2)

+ SDGsin(z3)ð Þ2u2(z3)

+S2
DG cos(z1)

co z2 + z4ð Þ
sin z1 � z2ð Þ � sin(z4)

� �2
u2(z4)

+ cos(z1)
sin z2 + z4ð Þ
sin z1 � z2ð Þ + cos(z4)

� �2
u2 SDGð Þ

+ cos2(z3)u
2(SGN)+ u2(h2)

ð12Þ

Equation (12) is a very complex functional relation-
ship giving uncertainty as a function of indirect mea-
surement parameters. It is therefore, important to
analyze the weight of the relative importance of the
specific contributions to the angle and distance para-
meters in relation to the overall uncertainty. Thus, the

Figure 6. Diagram of the principle of the REDM method
(confere Zhuo7).
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weight of the different sources of parameter errors is
shown in Figure 11 below:

When the distance SDG increases, the weight of the
relative contribution associated with the parameters
z1, z2 and z4 increases given respectively by Figure
11(a), (b), and (d) while the weight of the contribution
of the parameters z3, SDG, h and SGN decreases confered
respectively by Figure 11(c) and (e)–(g). Thus, for large
rear spans, it is important to use a highly accurate total
angle station. Moreover, a small weight of the relative
contribution during the front sight SGN and a relative
contribution associated with SDG can be noted to reach
50% of the global uncertainty for jz1 � z2j=10 gon
with SDG=10m. On the other hand, for zenith angle
differences z1 � z2 . 20 gon, the extreme accuracy in
determining the height of the prism is necessary to
reduce the overall uncertainty. Subsequently, a small
variation in the uncertainty for the two total station
classes as a function of the front sight characterized by
the SGN distance is illustrated in Table 6 and shown in
Figure 12 as follows:

The overall uncertainty uH varies slightly to within
for distances ranging from 1.7 to 300m for a T1 class
total station. On the other hand, for a total station of

Table 4. Measurement uncertainty as a function of H1 � H2

and z1 � z2 for the REDM method z2 = 90gonð Þ.

Class T3 total stations

uH(mm) 4.6 5 36.6 3.5 3.1 3.7
H1 � H2(m) 25 21.5 0 1.1 1.5 5
z1 � z2(gon) 220 215 -1 10 15 23

Figure 8. Variation for a class T3 total station of the global
uncertainty as a function of H1 � H2 and z1 � z2; z2 = 90 gonð Þ.

Table 5. Measurement uncertainty as a function of H1 � H2

and z1 � z2 for the REDM method z2 = 90gonð Þ.

Class T1 total stations

uH(mm) 3.3 3.6 26.7 2.6 2.2 2.2
H1 � H2(m) 25 21.5 0 1.1 1.5 5
z1 � z2(gon) 220 215 -1 10 15 23

Figure 9. Variation for a class T1 total station of the overall
uncertainty as a function of H1 � H2 and z1 � z2, z2 = 90 gonð Þ.

Figure 7. Analysis of the relative importance of each component of the global uncertainty for class T3 total station: RZ1
, RZ2

, RH1
,

and RH2
for figures (a), (b), (c), and (d) respectively where z2 = 80 gonð Þ.

Feumo et al. 7



class T1, the uncertainty varies to the millimeter under
the same conditions.

However, the influence of the backsight character-
ized by the SDG distance on the overall uncertainty is
illustrated in Figure 13

Uncertainty strongly increase with SDG. Thus, the
rear sight contributes greatly to the increase of the global
uncertainty uH for long ranges SDG because as shown in
Figure 13, a rear range of 300m can generate an uncer-
tainty of more than 40mm for class T3 total station and
6.4mm for class T1 total station. In order to measure
the simultaneous effects that the major parameters SDG

and z1 � z2 may have on the uncertainty uH, Figure 13
is shown.

Moreover, Figure 14 above shows that the overall
uncertainty uH increases rapidly as a function of the
distance SDG which separates the total station and the
prism placed at the rear. But this situation can be cor-
rected if the difference of zenith angles is at least greater
than 10 gon. Thus, in a practical setting, even when the
reflector placed at the rear is away from the total sta-
tion, it must be ensured that the difference of zenith
angles is not close to zero for the effect of compensa-
tion of the uncertainties to be possible.

Results and discussion

In this work, the numerical simulations are performed
in a context where the spans separating the prism of the
instrument cannot go beyond 300m. This has neglected
the refraction of light and the effect of the roundness of
the earth (see14). Thus, a good measure of the weight of
the contribution of a component of the uncertainty must
be without dimension such as Ri 2 0, 1½ � (0%–100%). In
Figure 2, globally, one realizes that for z2 =102 gon,
with z1 increasing, the weights RS and Rz1 decrease as
those of Rz2 and Rh increase. Thus, for S430m the
weight of the individual contribution of the prism
Rh580% of the global uncertainty with z1 increasing
from 55gon. Likewise, for increasing the tilt distance of
the prism S, the weights Rz1 and Rz2 increase and their

Figure 10. Diagram of the principle of the FBM method
(confere Zhuo7).

Figure 11. Analysis of the relative importance of each component of global uncertainty for class T3 total station: RZ1
, RZ2

, RZ3
, RZ4

,
RDG = RSDG

, RGN = RSGN
, and Rh2

for figures (a), (b), (c), (d), (e), (f), and (g) respectively where (SGN = 15m, z2 = 70 gon,
z3 = 110gon, z4 = 80gon).
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effects can be reduced by using a total station of high
angular precision, that is to say, low values of uH.

Figure 4 shows a clear improvement in the accuracy
due to the characteristics of the class T1 total station
compared to that of T3 obtained in Figure 3. The the-
ory of the REM method is simple, but the observation
process is a bit more complex, because when position-
ing the prism under the unknown point, the prism
should be placed very close to the vertical area below
or above the unknown point. Which is not always obvi-
ous in the field.

Moreover, the REDM is influenced by weights of
Rz1 and Rz2 when z1 is close to z2, which is to be
avoided. Thus, Rz1 + Rz2 tends toward 100% of the
contribution to global uncertainty while the other con-
tributions are of negligible weight. On the other hand,
for z1 � z2 =20gon the weight of the contribution of
RH1

tends toward 100% forH1 close toH2 and the con-
tribution of RH3

is negligible. Indeed, when H1 �H2

increases, the contribution weights of Rz1 and Rz2

increase as RH1
, RH2

, and RH3
decrease. Thus, an

increase in H1 �H2 corresponds to an increase of dis-
tance O1O2 on a relatively flat ground, that is to a large
difference in elevation between two consecutive stations
O1 and O2 on a rough terrain. Figure 7 illustrates the
fact that it is important to avoid that z1 � z2 tends to
zero. The disadvantage of the REDM method is that it
is necessary to place a total station at two positions, the
process then becomes a little more complex than for the

REM. The use of the method has the advantage of
being able to position a prism at any location, not
necessarily under the plumb line of unknown points,
the method could be widely used in surveying work.

On the other hand, the FBM is influenced by weights
of Rz1 and Rz2 when z1 is close to z2, which is to be
avoided. Moreover, Rz1 , Rz2 and Rz3 and Rz4 increase
with SDG while Rz3 , Rz2 and RGN, RDG decrease. Thus,
backsighting corresponds to the determination of the
AGD triangle which greatly increases the overall level
of uncertainty while the forward ones have a very small
influence on the overall level of uncertainty. This is per-
fectly illustrated by Figures 11–13. The front-to-back
measurement method can be used to determine the
height of objects above, for example in water areas;
compared to the REM and the REDM, this method is
more flexible when choosing the position of the prisms.
The disadvantage of this method is that the rear prism
is removed from the tripod to be replaced by the total
station at each operation. This can introduce errors
during measurements.

Conclusion

The class T3 total station used as a survey instrument
in this paper with appropriate method selected, gave us
results as precise and convincing as much as would
have given the total station of higher class T1 more
powerful and 10 times more expensive. Thus, analysis
of numerical simulations of the overall uncertainty of
point measurement using a given method depends on
the contribution affecting it, not the tool. For this rea-
son, the optimal control technique informs us that the
displacement altitude measurement method produces
better height accuracy for points where it is possible to
place a prism under the plumb line; whereas the double
distance altitude measurement method is recom-
mended, since in this case the prism can be placed at

Figure 12. Slight variation of overall uncertainty as a function of SGN for class T1 and T3 total stations respectively for Figures (a)
and (b); z1 = 80gon, z2 = 70gon, z3 = 100gon, z4 = 90gon SDG = 15mð Þ.

Table 6. Slight variation of overall uncertainty as a function of
SGN for class T3 for the FBM method.

Class T3 total stations

uH(mm) 4.5 5.6 144.5 452.8 6.6 5.1 5
SDG(m) 5 10 7 15 15 19 20
z1 � z2(gon) 220 212 -1 1 8 10.5 12.5
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the target point provided that small differences in
zenith angles z1 � z2 are avoided. What’s more, for
small spans, the front-back measurement method for a
distance SDG =10m, the front height of the prism has a
relative contribution of 90% for a zenith angle differ-
ence z1 � z2 =40gon.
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