
This article was downloaded by: [ARDI]
On: 20 September 2013, At: 06:21
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Drying Technology: An International Journal
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/ldrt20

MEASUREMENT ERRORS PROCESSING BY COVARIANCE
ANALYSIS FOR AN IMPROVED ESTIMATION OF DRYING
CHARACTERISTIC CURVE PARAMETERS
Yves Jannot a , Jean-Christophe Batsale a , Clément Ahouannou b , Abraham Kanmogne c &
André Talla c
a LEPT-ENSAM, Esplanade des Arts et Métiers, Talence, 33405, France
b LERTI-CPU/UNB, Cotonou, BP 2009, Benin
c LAEN-ENSP, Yaoundé, BP 8390, Cameroun
Published online: 06 Feb 2007.

To cite this article: Yves Jannot , Jean-Christophe Batsale , Clément Ahouannou , Abraham Kanmogne & André Talla (2002)
MEASUREMENT ERRORS PROCESSING BY COVARIANCE ANALYSIS FOR AN IMPROVED ESTIMATION OF DRYING CHARACTERISTIC
CURVE PARAMETERS, Drying Technology: An International Journal, 20:10, 1919-1939, DOI: 10.1081/DRT-120015576

To link to this article:  http://dx.doi.org/10.1081/DRT-120015576

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/ldrt20
http://www.tandfonline.com/action/showCitFormats?doi=10.1081/DRT-120015576
http://dx.doi.org/10.1081/DRT-120015576
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

MEASUREMENT ERRORS PROCESSING

BY COVARIANCE ANALYSIS FOR AN

IMPROVED ESTIMATION OF DRYING

CHARACTERISTIC CURVE PARAMETERS

Yves Jannot,1,* Jean-Christophe Batsale,1

Clément Ahouannou,2 Abraham Kanmogne,3

and André Talla3
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ABSTRACT

The aim of this paper is to show the interest of the covariance
analysis applied to measurement error in the particular case of
the identification of a drying characteristic curve from experi-
mental drying data. The modelisation of drying by use of the
Drying Characteristic Curve (DCC) method is first presented
with usual specifications (power function, critical moisture
content. . .). The experimental procedure used to obtain
drying curves and the data processing are detailled and ana-
lysed. Measurements errors are identified at the first step of the
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procedure and their effects on the estimation error of the expo-
nent � of the power function are estimated. Three different
methods for estimating � are presented under their matrix
form: the least square method and two methods based on the
hhGauss–Markovii or hhMaximum likelihoodii theorem, firstly
under a simplified form suited if the estimation errors are
uncorrelated and secondly under a complete form suited even
if the estimation errors are correlated. These three
methods are applied to experimental results obtained with
ginger roots drying. The value of the exponent � of the
power function and then the distances between the three
corresponding theoretical drying curves (representing product
water content vs. time) and the experimental points are studied.
It is shown that in this particular application, the complete
Gauss–Markov method leads to the better fitting and that
the simplified Gauss–Markov method, since it is a priori non
appliable in this case where errors are correlated, gives quite
better results than the oridnary least squares method. The cov-
ariance matrices of the estimation errors of reduced water con-
tent, reduced drying rate and exponent � are also presented in
order to show the correlations existing between the measure-
ment errors of each variable during a drying cycle.

Key Words: Drying characteristic curve; Inverse method;
Covariance analysis; Measurement error processing

INTRODUCTION

The hhDrying Characteristic Curveii (DCC) is a concept proposed by
Van Meel[1] in 1957. It consists in processing and reducing drying experi-
mental results. The aim of such a processing is to obtain a single drying
curve for a given product with given sizes, independently of the drying air
conditions (temperature, humidity, speed), by use of convenient variables
reductions applied to the product water content and to the drying rate.

Following Van Meel, many authors among them Desmorieux and
Moyne,[2] Belahmidi et al.[3] Fornell et al.[4] Salgado et al.[5] and
Ahouannou et al.,[6] have used this concept to characterize product proper-
ties with regard to drying.

Nevertheless, such authors do not describe deeply the way they
take into account the measurement errors related to parameters estimation.
Therefore, the aim of this paper is to show the interest of processing
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measurement errors by covariance analysis that can include the following
aspects:

– Improved estimation of the DCC parameters.
– The study of the error propagation and sensitivity to DCC

parameters can give information on the way to obtain the most
confident result.

In this paper, the procedure to obtain the Drying Characteristic Curve
(DCC) is first presented and analysed. The experimental procedure used to
obtain drying curves and the mathematical calculation leading to the DCC
from them are detailed. Error measurements at each step of the procedure
and their effects on the estimation error of the exponent � of the power
function are then described. Three different methods for estimating � are
presented under their matrix form: the least square method and two
methods based on the Gauss–Markov theorem. These three methods are
applied to experimental results related to ginger roots drying in order to
determine the value of the exponent �. The error propagation is analysed by
the study of the covariance matrices of the estimation errors of reduced
water content, reduced drying rate and exponent �. A sensitivity analysis
of the different parameters is finally proposed.

THE DRYING CHARACTERISTIC CURVE METHOD

The hhDrying Characteristic Curveii represents the reduced drying rate
Vr as a function of the reduced water content Xr. These two variables are
defined as follows:

VrðtÞ ¼
VðtÞ

V1

and XrðtÞ ¼
XðtÞ � Xeq

Xcr � Xeq

with V ¼
dX

dt

X(t): Dry basis product water content at time t
Xeq: Dry basis product water content when equilibrium between air

and product is reached
Xcr: Dry basis product water content at the end of the first drying

phase (initial phase with constant drying rate)
V(t): Drying rate of the product at time t
V1: Drying rate of the product during the first drying phase

A mathematical expression of the DCC for a product with fixed initial
sizes is sought by analyzing the experimental drying curves obtained with
various drying air temperature, humidity and speed conditions. One repre-
sentative example of a presentation such as dX=dt ¼ f ðXÞ is shown in Fig. 1.

COVARIANCE ANALYSIS OF DCC PARAMETERS 1921

D
ow

nl
oa

de
d 

by
 [

A
R

D
I]

 a
t 0

6:
21

 2
0 

Se
pt

em
be

r 
20

13
 



©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

For biological products, the raising temperature phase is most often
negligible, especially if the difference between air and product temperatures
is low and if the product dimensions are small. Our experimental results
have confirmed this hypothesis.

The experimental curves X(t) have been derived to obtain the estimated
curves VðtÞ ¼dX=dtðtÞ: Such analysis gives a mean value of the critical water
contentXcr as shown in Fig. 1. Several authors (among them Desmorieux and
Moyne[2]) have considered that for biological products it is difficult to identify
a critical water content different from the initial water content X1.
Nevertheless, Talla et al.[7] could identify a critical water content Xcr 6¼X1

for banana and mango.
Then, from each experimental point (t,X), the couples of correspond-

ing values (Xr,Vr) are calculated and the whole points obtained for various
drying air conditions are placed on a unique graph representing Vr¼ f(Xr) to
obtain a cloud of points illustrated in Fig. 2.

A mathematical expression of the DCC: Vr¼ f(Xr) which fit this cloud
of points more or less dispersed is then sought. The function f having to
respect the following conditions:

– If X¼Xeq: Xr¼ 0 and V¼ 0 so Vr¼ 0 and finally f (0)¼ 0

– If X¼Xcr: Xr¼ 1 and V¼V1 so Vr¼ 1 and finally f (1)¼ 1

– 0<f(X)<1 if 0<Xr<1.

Figure 1. Example of drying curve V¼ f(X) for mango with drying air at T¼ 40�C,
HR¼ 15% and v¼ 1m s�1.

1922 JANNOT ET AL.
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The function f is more often sought as a power function (Ahouannou
et al.[6] and Talla et al.[7]) It also could be seek as a polynomial expression as
noted by Desmorieux and Moyne.[2] In this study, the case of a power
function Vr¼X

�
r has been considered. This function is written in a devel-

oped form as:

VðtÞ

V1

¼
XðtÞ � Xeq

Xcr � Xeq

� ��
ð1Þ

Experiments have been conducted within the drying tunnel depicted in
Fig. 3, the objectives were:

– Obtaining experimental drying curves X¼ f (t) for given products
and air conditions

– Determining of the value of the exponent � which ensure the best
fitting between the experimental points X(t) and the theoretical
curves obtained by integration of Eq. (1):

If t 	 tc where tc ¼
Xcr � X1

V1

:X tð Þ ¼ X1 þ V1t

If t > tc if � 6¼ 1:

XðtÞ ¼ Xeq þ ðXcr � XeqÞ 1 þ
ð1 � �ÞV1ðt� tcÞ

ðXcr � XeqÞ

� �1=ð1��Þ

if � ¼ 1: XðtÞ ¼ Xeq þ ðXcr � XeqÞ exp
V1ðt� tcÞ

Xcr � Xeq

� �

where: tc First drying time duration.

Figure 2. Drying characteristic curve for mango.
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EXPERIMENTAL DETERMINATION OF

THE VARIOUS VARIABLES

It is considered here that the result X̂X of a measurement or estimation
of a parameter X is the sum of the true or exact value of X plus a random
variable eX: X̂X ¼ X þ eX . The random variable eX is called the measure-
ment error, the average of the k values eXi (i¼ 1, . . . , k) obtained by repeat-
ing k times the measurement of X is considered to be equal to zero. What is
usually called measurement uncertainty is a value dX such as the absolute
values of eXi are always lower than dX. So that dX can also be seen as the
maximum observable value of the error eX. If the value X̂X of the parameter
X is directly obtained by use of a measuring apparatus, dX is called the
precision of the apparatus.

Product Initial Water Content X1 Determination

The fresh product (before any drying) water content is calculated as:

X1 ¼
m0

�m0
d

m0
d

where m0 is the mass of a piece of fresh product representative of the product
to be dried and m0

d its bone dry mass. Both masses are estimated by

Figure 3. Schematic view of the drying tunnel.
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difference between the mass of the productþ support set and the mass of the
support, this last one being measured before disposing the piece of fresh
product on it. So, the measurement uncertainties dm0 and dm0

d on the masses
m0 and m0

d obtained by the difference of two weighed masses is twice the
precision �m of the balance.

Product Water Content XðtÞ Determination

A mass m1 of fresh product is then placed on a support which mass M
is determined by weighting. The productþ support set mass (Mþm)1 is
measured before introduction in the drying tunnel. The temperature, humid-
ity and speed of the air flow are regulated in order to obtain constant
conditions. The mass of the supportþ product set is measured at various
times ti until the product water content reached the desired final value. The
product water content at time ti is calculated as:

Xi ¼
mi �md

md

where:

mi ¼ ðM þmÞi �M

md ¼
m1

ð1 þ X1Þ

The measurement uncertainties dmi and dm1 on the masses mi and m1

obtained by the difference of two weighed masses is twice the precision �m
of the balance.

Drying Rate VðtÞ Determination

The drying rate Vi is deduced from the experimental points (ti,Xi)
using classical finite difference expressions:

– First Point (t¼ 0):

V1 ¼
X1 � X2

t2

– Last point (t¼ tp):

Vp ¼
Xp�1 � Xp

tp � tp�1

COVARIANCE ANALYSIS OF DCC PARAMETERS 1925
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– Intermediary point (t¼ ti):

Vi ¼
1

2

Xi�1 � Xi
ti � ti�1

þ
Xi � Xiþ1

tiþ1 � ti

� �

Exponent a Determination

For each measurement at each time ti, �i is evaluated by use of the
relation:

�i ¼
lnðVriÞ

lnðXriÞ
with Vr ¼

Vi
V1

and Xr ¼
Xi � Xeq

Xcr � Xeq

MEASUREMENT OR ESTIMATION ERRORS

The following hypotheses have been considered:

– The measurement errors of times ti at which measurements are
realised are negligible.

– The estimation error on the evaluated values of Xeq and Xcr are
negligible. This hypothesis concerning Xcr will be further justified.

– All the mass measurements are done with the same balance which
precision is �m.

The error calculation for the various variables leads to the following formula:

eX1 ¼
1

m0
d

em0
þ ðX1 � 1Þem0

d

� �
eXi ¼ ðXi þ 1Þ

emi

mi

þ
em1

m1

þ
eX1

1 þ X1

� �
for i 6¼ 1

eXr
i
¼ Xri

eXi
Xi � Xeq

þ
eX1

X1 � Xeq

� �

eV1 ¼
eX1 � eX2

t2 � t1

eVp ¼
eXp�1 � eXp

tp � tp�1

eVi ¼
1

2

eXi�1 � eXi
ti � ti�1

þ
eXi � eXiþ1

tiþ1 � ti

� �

eVr
i
¼ Vr

i

eV1

V1

þ
eVi
Vi

� �

e�
i
¼

eVr
i

Vri lnðVri
Þ
þ

lnðVr
i
ÞeXr

i

lnðXr
i
Þ

h i2
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The measurement uncertainties can be calculated by this formulas by
taking as error measurement on the masses their uncertainties measurement
that is 2�m, where �m is the precision of the balance.

EXPERIMENTAL DATA ANALYSIS METHOD

A number p of measured values m̂m1, m̂m2, . . . , m̂mp acquired at times
t1,t2, . . . , tp are used to calculate ( p� 1) corresponding values �̂�2, �̂�3, . . . , �̂�p
of the researched exponent �. Uncertainties d�i of these estimated values
resulting from measurement uncertainties dmi of mi are also calculated by
the previous formula with em0

¼ em0
d ¼ em1¼ emi¼ 2�m. Uncertainty meas-

urement dX1 of X1 is calculated in the same way.
A polynomial relationship is the most usual form sought in physical

problems, in this case:

� ¼ bnt
n
þ bn�1t

n�1
þ � � � þ b1tþ b0

The relation between the exact value �i of � at time ti can be written
under the form:

�2

�3

..

.

�p

2
6664

3
7775 ¼

1 t2 � � � tn2
1 t3 � � � tn3
..
. ..

. ..
.

1 tp � � � tnp

2
6664

3
7775

b0
b1
..
.

bn

2
6664

3
7775

Or under a matrix form:

½�� ¼ ½S�½B� where ½S� ¼
@f

@bi

� �
tj

" #
is the sensitivity matrix:

The determination of the matrix [B] when the matrix [S] is known
without error and the matrix ½�̂�� is known with unnegligible errors can be
done using one of the two followings methods:

The Ordinary Least Square Method

This classical method as described by Trigeassou[8] and Press et al.[9]

among many authors can be applied to calculate the vector [B] which mini-
mise the quadratic error D between the measures values vector ½�̂�� and the
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exact values vector [�], D being calculated as follows:

D ¼ �̂�½ � � S½ �
�� B½ �

�� ¼ ð½�̂�� � ½S�½B�Þtð½�̂�� � ½S�½B�Þ

The vector B which minimise D is given by:

½B� ¼ ð½S�t½S�Þ�1St½�̂��

Gauss–Markov Method

According to Beck and Arnold,[10] if the following conditions are
verified:

– The matrix [S ] is known without error,
– The errors on �i have zero mean,
– The covariance matrix of measurement error is known with excep-

tion of a multiplicative constant a, so that a matrix P is known that
verifies [P]¼ a [cov(e�)],

– The matrix [P] is positive definite,

then the vector minimising the difference:

D ¼ ð½�̂�� � ½S�½B�Þt½covðe�Þ��1
ð½�̂�� � ½S�½B�Þ

is given by:

½B� ¼ ð½S�t½P��1
½S�Þ�1

½S�t½P��1
½�̂��

This evaluation method called ‘‘Gauss–Markov method’’ take into
account the differences between the measurement errors of the various �i
values and minimise the importance of the �i values with a great measure-
ment error. The least square method considers implicitely that all the �i
values have the same measurement errors.

The most important problem linked to the application of this method
is the evaluation of the matrix [cov(e�)]. Two cases may occur:

Simplified method: the measures of � are not correlated i.e., the
measurement error of �i is independent of the measurement error of �j. In
this specific case: cov(e�i, e�j)¼ 0 if i 6¼ j and the matrix [cov(e�)] is diagonal:

½covðe�Þ� ¼

varðe�1Þ

varðe�2Þ 0
. .
.

0
varðe�pÞ

2
664

3
775
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Whether the hypothesis that �i measurement is errorless, the mean
value E(e�ij) at i constant of the measurement errors (e�ij) is equal to zero
and var(e�i) may be written as:

varðe�iÞ ¼
1

k

Xk
j¼1

½e�ij � Eðe�ijÞ�
2
¼

1

k

Xk
j¼1

ðe�ijÞ
2
¼

1

k

Xk
j¼1

ðrjd�iÞ
2

¼ ðd�iÞ
2 1

k

Xk
j¼1

r2j

where rj is a random number bounded by �1 and þ1.
With the hypothesis that all the measured values �ij of � at time ti are

dispersed in the same manner around the mean value �i, it may be written:

1

k

Xk
j¼1

r2j ¼ a

and the covariance matrix take the following form:

½covðe�Þ� ¼ a

ðd�1Þ
2

ðd�2Þ
2 0

. .
.

0
ðd�pÞ

2

2
664

3
775

Complete method: The measured values of � are correlated i.e.,
measurement error of �i is related to measurement error of �j, so that
the previous method cannot be applied. Nevertheless, the information
contained in measurement uncertainty value dmi and in the errors calculus
formula may be used in the following way:

kmeasurements of X1, m1,m2, . . . ,mp are simulated by giving the value
X̂X1 ¼ X1 þ rjdX1 to the jth simulated value of X1 and the value
m̂mij ¼miþ rijdmi to the jth simulated value of mi, where rj and rij are
random numbers bounded by �1 and þ1. Using the previously established
errors formula, the values Xij ,Vij,Xrij ,Vrij ,�ij corresponding to the masses m̂mij

and the errors eXij, eVij, eXrij , eVrij and e�ij induced by the error emij
are evaluated for i varying from 1 to p and for j varying from 1 to k.
A matrix [e�] of the simulated values e�ij is thus obtained which enables
an evaluation of the matrix [cov(e�)] and the application of the
Gauss–Markov method. The above described methods may be applied to
relations other than polynomial on condition that this relation be linear
toward bi that is to say ð@=@biÞ½@f ðtÞ=@bj � ¼ 0, for all values of i varying
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from 1 to p and of j varying from 1 to k (the sensibility matrix S must not
depend on bi).

Method Comparison

The previously described methods have been applied for the
processing of experimental data of a drying cycle: the results of a drying
experiment of ginger roots cut in 50mm long pieces and disposed in an air
flowing at T¼ 40�C, v¼ 1m/s and HR¼ 32%. A first drying phase with a
constant drying rate could not be identified so the critical water content Xcr

is considered as equal to the initial water content X1. The equilibrium water
content Xeq has been calculated by applying Ahouannou et al.[6] results that
leads to the value Xeq¼ 0.1 kg kg�1. A balance with a precision of 0.01 g has
been used for weight measurements, the experimental results are presented
in Table 1.

The initial water content (dry basis) value of X1¼ 4.559 kg/kg has been
obtained by complete dehydration of a separate sample (representative
of the product to be dried) with a final bone dry mass md¼ 30 g.
The calculation of the Xi, Vi, Vri ,Xri , �i values and of their uncertainties
leads to the results presented in Table 2, the measurement uncertainties
of the various masses being equal to 0.02 g that is twice the balance
precision.

The problem to be solved is the simplest one where a constant and
time independent value � is sought which correspond to the estimation of
�¼ f(t)¼ b0. In this case, the matrix [S] is a column matrix with p rows and
each element being equal to 1:

S ¼

1
..
.

1

2
4

3
5

Table 1. Experimental Values of the Ginger Mass During Its Drying

ti (h) 0 0.17 0.25 0.42 0.5 0.75 1 1.25 1.5
mi (g) 46.30 44.11 43.19 42.02 41.09 38.48 36.43 34.30 32.48

ti (h) 1.75 2 2.5 3 4 5 6 7 8
mi (g) 30.71 29.07 26.08 23.67 20.11 17.46 15.49 14.06 13.13
ti (h) 10 12 14 16 18 20 22
mi (g) 11.7 11.02 10.43 10.12 9.87 9.79 9.64
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The matrix ½�̂�� is a column matrix which elements are equal to the
( p� 1)¼ 24 estimated values of � corresponding to the 25 measurements
of mi.

Three methods have been successively applied to estimate �: The least
squares method, the simplified Gauss–Markov method suited if the errors
on the �i values are not correlated and the complete Gauss–Markov method
suited even if the errors on the �i values are correlated, these three methods
leading respectively to the estimated values �ls, �gmnc and �gmc.

The least squares method leads to the estimation of � as follows:

�ls ¼
1

p� 1

Xp
i¼2

�i where �i ¼
lnðVri Þ

lnðXri Þ

Table 2. Calculated Values of the Water Contents X and Xr, the Drying Rates V

and Vr, the Exponent � and Their Uncertainties During the Drying

ti (s)
Xi

(kg kg�1)
104 Vi

(kg kg�1 s�1) Xri Vri �i 103 dXri 10�1 dVri d�i

0 4.559 4.296 1 1 — 0 0 —
612 4.296 4.066 0.9408 0.9347 1.107 2.342 1.193 2.111
900 4.186 3.065 0.9165 0.7074 3.972 2.301 1.179 1.999

1512 4.045 3.086 0.8842 0.7122 2.758 2.249 1.161 1.376

1800 3.933 3.679 0.8597 0.8429 1.131 2.207 1.118 0.880
2700 3.620 3.108 0.7894 0.7202 1.388 2.091 0.651 0.396
3600 3.374 2.788 0.7342 0.6460 1.414 2.000 0.608 0.315

4500 3.118 2.635 0.6769 0.6105 1.265 1.904 0.581 0.251
5400 2.899 2.395 0.6279 0.5548 1.266 1.822 0.547 0.219
6300 2.687 2.227 0.5802 0.5270 1.177 1.743 0.525 0.189

7200 2.490 1.851 0.5361 0.4289 1.358 1.670 0.400 0.156
9000 2.131 1.801 0.4749 0.4173 1.738 1.568 0.312 0.105

10800 1.842 1.638 0.3907 0.3794 1.0311 1.428 0.256 0.075
14400 1.414 1.036 0.2948 0.2399 1.169 1.269 0.159 0.058

18000 1.096 0.770 0.2234 0.1785 1.150 1.150 0.130 0.052
216000 0.860 0.567 0.1704 0.1314 1.147 1.063 0.108 0.050
252000 0.688 0.394 0.1319 0.0912 1.182 1.000 0.090 0.052

288000 0.576 0.274 0.1069 0.0636 1.232 0.957 0.064 0.049
360000 0.405 0.176 0.0683 0.0408 1.193 0.893 0.041 0.043
432000 0.323 0.106 0.0500 0.0245 1.238 0.863 0.034 0.053

504000 0.252 0.075 0.0342 0.0174 1.200 0.837 0.031 0.060
576000 0.215 0.047 0.0258 0.0124 1.201 0.823 0.027 0.080
648000 0.185 0.028 0.0191 0.0064 1.276 0.811 0.026 0.115

720000 0.175 0.019 0.0169 0.0045 1.327 0.808 0.025 0.151
792000 0.157 0.025 0.0129 0.0058 1.182 0.801 0.025 0.116
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The simplified Gauss–Markov method leads to the calculation of � as
follows:

�gmnc ¼

Pp
i¼2 ð�i=ðd�iÞ

2
ÞPp

i¼2 ð1=ðd�iÞ
2
Þ

It can be deduced from Fig. 4 representing the experimental values of
Xri ,Vri , ln(Xri ) and �i with their confidence interval how the same mea-
surement error on each mass mi leads to errors increasingly different
between each measurement from Xri to �i. So that it can already be forecast
that even the simplified Gauss–Markov method will give better results than
the least squares method since the experimental points having a great meas-
urement uncertainty on �i will have a very small influence on the finally
estimated value of �.

For the complete Gauss–Markov method, a number of k¼ 10,000
measurements have been simulated.

The following values have been estimated: �ls¼ 1.401, �gmnc¼ 1.185
and �gmc¼ 1.041.

Figure 4. Graphical representation of Xri , ln(Xri ), Vrl and �i with their confidence

intervals.
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The graph X¼ f(t) in Fig. 5 represents the 25 experimental points and
the three theoretical curves calculated with the � values obtained with the
three methods.

One can see that the theoretical curve using the �gmc value calculated
by the complete Gauss–Markov method (with the hypothesis that the errors
are correlated) is quite close to all the experimental points. The theoretical
curve using the �gmnc value calculated by the simplified Gauss–Markov
method (with the hypothesis that the errors are not correlated) is slightly
distant from a few points in the middle of the curve but is quite close to the
experimental points at the end of the drying. The gap between the theo-
retical curve using the �ls value calculated by the ordinary least squares
method and the experimental points is quite important all along the curve.

ERROR PROPAGATION AND SENSITIVITY ANALYSIS

The analysis of the errors covariance matrices of the various variables
(graphically represented in Fig. 6) shows the following features:

– The covariance matrix is diagonal for non correlated variables such
as mi.

– The hypothesis that the matrix [cov(e�)] is diagonal is not justified
in this case since all the d�i values are linked to d�1 both through
the reduced drying rate Vriwhich depends on V1 and through

Figure 5. Experimental points and theoretical drying curves for a ginger drying
experiment.
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Xriwhich depends on X1. The graphical representation of the

matrix [cov(e�)] confirms this assertion.

It has been established that the product water content during drying is
given by (if the DCC is represented by a power function and if � 6¼ 1):

XðtÞ ¼ Xeq þ ðXcr � XeqÞ 1 þ
ð1 � �ÞðV1tþ X1 � XcrÞ

ðXcr � XeqÞ

� �1=ð1��Þ

The sensitivity of each parameter to the calculated value of X is
deduced from the partial derivates of X to these parameters. These deriva-
tives has been calculated as:

@X

@Xcr

¼

�
1 þ

ð1 � �ÞðV1tþ X1 � XcrÞ

Xcr � Xeq

�1=ð1��Þ

þ

"
1 þ

ð1 � �ÞðV1tþ X1 � XcrÞ

Xcr � Xeq

�ðð1=1�aÞ�1Þ Xeq � V1t� X1

ðXcr � XeqÞ

Figure 6. Graphical representation of the covariance matrices of the errors on mi,

Xri , Vri and �i for the 25 experimental points.
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@X

@Xeq

¼ 1 �

�
1 þ

ð1 � �ÞðV1tþ X1 � XcrÞ

Xcr � Xeq

�1=ð1��Þ

þ

�
1 þ

ð1 � �ÞðV1tþ X1 � XcrÞ

Xcr � Xeq

�ðð1=1��Þ�1Þ
ðV1tþ X1 � XcrÞ

ðXcr � XeqÞ

@X

@V1

¼ t

�
1 þ

ð1 � �ÞðV1tþ X1 � XcrÞ

Xcr � Xeq

�ð1=1��Þ�1Þ

@X

@�
¼ ðXcr � XeqÞ

�
1 þ

ð1 � �ÞðV1tþ X1 � XcrÞ

Xcr � Xeq

�1=ð1��Þ

�

�
1

ð1 � �Þ2
ln

�
1 þ

ð1 � �ÞðV1tþ X1 � XcrÞ

Xcr � Xeq

�

�
1

ð1 � �Þ

ðV1tþ X1 � XcrÞ

Xcr � Xeq þ ð1 � �ÞðV1tþ X1 � XcrÞ

�

The values of V1, Xcr, Xeq and �gmc of the previous example related to
ginger drying has been used to calculate and plot in Fig. 7 the evolution of:

– 0:1Xcrð@X=@XcrÞ, 0:1Xeqð@X=@XeqÞ, 0:1V1ð@X=@V1Þ, and0:1�ð@X=@�Þ
as a function of X that represents the absolute variation of X when
each of these parameters varies separatly of 10% from their initial
values.

– 0:1ðXcr=XÞð@X=@XcrÞ, 0:1ðXeq=XÞð@X=@XeqÞ, 0:1ðV1=XÞð@X=@V1Þ,
and 0:1ð�=XÞð@X=@�Þ as a function of X that represents the relative

Figure 7. Graphical representation of the absolute and relative variation on X
induced by a relative variation of 10% on the DCC parameters: Xcr, Xeq, V1, and �.
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variation of X when each of these parameters varies separatly of
10% from their initial values.

It can be seen in Fig. 7 that variations on Xeq have an influence only at
the end of the drying (on the low values of X), that the most sensitive
parameter is � which remains sensitive at the end while variations on Xcr

and V1 are influent at the beginning of the drying have a negligible influence
on the low values of X. A relative variation of 10% on Xcr or on V1 leads to
an absolute variation of less that 0.01 kg kg�1 on the values of X at the end
of the drying that is low when compared with the X measurement uncer-
tainty. It can also be noted that variations on Xcr and V1 have similar effects
on X that is a consequence of the relation:

dX

dt
¼

V1

ðXcr � XeqÞ
� ðX � XeqÞ

� with: Xcr � Xeq � Xcr

These sensitivity curves can be useful to analyse the residues of a
drying curve (differences between theoretical and experimental curves)
and specially to identify the parameter that must be primarily modified to
minimize these residues.

CONCLUSIONS

The results obtained for the identification of the exponent of the
drying characteristic curve of ginger underlines the interest of the
Gauss–Markov method for processing noisy experimental measurements
in some specific cases. In the case studied in this paper, a rather strong
correlation exists between the �i. The complete Gauss–Markov method
(assuming that the errors are correlated) leads to quite significative
improvement compared with the ordinary least square method. The
improvement obtained in comparison with the simplified Gauss–Markov
method (assuming that the errors are not correlated) is less important.
Though the applicability conditions are not verified, this very easy to
apply method gives quite better results than the ordinary least squares
method. The use of the proposed estimation method may be helpful to
improve the choice of the time interval at which masses must be measured
to minimize the estimation error. The error propagation illustrated by the
graphical representation of the covariance matrices of errors shows that
mesurement errors on masses are strongly amplified when one estimates
the DCC parameters. The sensitivity analysis gives information about the
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importance and the variation along the drying curve of the sensibility of
the DCC parameters, that could be useful to optimize the values of these
parameters. The analysis of the residues (difference between experimental
and hhimprovedii theoretical curves) may also be useful to find mathemat-
ical expressions different from the power function to represent the DCC if
necessary.

NOTATION

a Constant
bi Constants
B Matrix of constants bi
dmi Measurement uncertainties on mass mi (kg)
d�i Estimation uncertainty on �i induced by mi measurement

uncertainties
emij Difference between the jth measured value of mi and its

exact value (kg)
e�ij Difference between the jth measured value �i and its exact

value
HR Relative humidity of the drying air (%)
m Mass of the fresh product set in the drier (kg)
m0 Mass of the fresh product used for X1 determination (kg)
md Bone dry mass of the product set in the drier (kg)
m0
d Bone dry mass of the product used for X1 determination

(kg)
M Mass of the product support in the drying apparatus (kg)
t Drying time (s)
v Drying air flow speed (m s�1)
S Sensitivity matrix
V Drying rate (kg kg�1 s�1)
Vr Reduced drying rate
V1 First phase drying rate (kg kg�1 s�1)
Xi Water content (kg kg�1)
Xr Reduced water content
X1 Initial water content (kg kg�1)

Greek Symbols

� Exponent of the power function representing the drying
characteristic curve
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Subscripts

i Variable value at time ti
j Measurement number
1 Variable value at time t1¼ 0
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